run_calibration_check()
runs the calibration check. The calibration check involves applying sceptre to analyze negative control target-response pairs --- pairs for which we know there is no association between the target and response --- to ensure control of the false discovery rate. The calibration check enables us to verify that the discovery set that sceptre ultimately produces is not contaminated by excess false positives. See Chapter 5 of the manual for more detailed information about this function.
Usage
run_calibration_check(
sceptre_object,
n_calibration_pairs = NULL,
calibration_group_size = NULL,
print_progress = TRUE,
parallel = FALSE,
n_processors = "auto",
log_dir = tempdir(),
output_amount = 1
)
Arguments
- sceptre_object
a
sceptre_object
- n_calibration_pairs
(optional) the number of negative control pairs to construct and test for association
- calibration_group_size
(optional) the number of negative control gRNAs to randomly assemble to form each negative control target
- print_progress
(optional; default
TRUE
) a logical indicating whether to print progress updates- parallel
(optional; default
FALSE
) a logical indicating whether to run the function in parallel- n_processors
(optional; default
"auto"
) an integer specifying the number of processors to use ifparallel
is set toTRUE
. The default,"auto"
, automatically detects the number of processors available on the machine.- log_dir
(optional; default
tempdir()
) a string indicating the directory in which to write the log files (ignored ifparallel = FALSE
)- output_amount
(optional; default
1
) an integer taking values 1, 2, or 3 specifying the amount of information to return.1
returns the least amount of information and3
the most.
Examples
library(sceptredata)
data(highmoi_example_data)
data(grna_target_data_frame_highmoi)
# import data
sceptre_object <- import_data(
response_matrix = highmoi_example_data$response_matrix,
grna_matrix = highmoi_example_data$grna_matrix,
grna_target_data_frame = grna_target_data_frame_highmoi,
moi = "high",
extra_covariates = highmoi_example_data$extra_covariates,
response_names = highmoi_example_data$gene_names
)
# set analysis parameters, assign grnas, run qc, run calibration check
sceptre_object <- sceptre_object |>
set_analysis_parameters(
side = "left",
resampling_mechanism = "permutations"
) |>
assign_grnas(method = "thresholding") |>
run_qc() |>
run_calibration_check(
n_calibration_pairs = 500,
calibration_group_size = 2,
parallel = TRUE,
n_processors = 2
)
#> Constructing negative control pairs. ✓
#> Generating permutation resamples. ✓
#> Running calibration_check in parallel. Change directories to /var/folders/7v/5sqjgh8j28lgf8qx3gbtq1h00000gp/T//RtmpHhxNRw/sceptre_logs/ and view the files calibration_check_*.out for progress updates.
#> ✓
#>