set_analysis_parameters()
sets the analysis parameters that control how the statistical analysis is to be conducted. See Chapter 2 of the manual for more detailed information about this function.
Usage
set_analysis_parameters(
sceptre_object,
discovery_pairs = data.frame(grna_target = character(0), response_id = character(0)),
positive_control_pairs = data.frame(grna_target = character(0), response_id =
character(0)),
side = "both",
grna_integration_strategy = "union",
formula_object = "default",
resampling_approximation = "skew_normal",
control_group = "default",
resampling_mechanism = "default",
multiple_testing_method = "BH",
multiple_testing_alpha = 0.1
)
Arguments
- sceptre_object
a
sceptre_object
- discovery_pairs
(optional) a data frame with columns
grna_target
andresponse_id
specifying the discovery pairs to analyze- positive_control_pairs
(optional) a data frame with columns
grna_target
andresponse_id
specifying the positive control pairs to analyze- side
(optional; default
"both"
) the sidedness of the test, one of"left"
,"right"
, or"both"
- grna_integration_strategy
(optional; default
"union"
) a string specifying the gRNA integration strategy, either"singleton"
,"union"
, or"bonferroni"
- formula_object
(optional) a formula object specifying how to adjust for the covariates in the model
- resampling_approximation
(optional; default
"skew_normal"
) a string indicating the resampling approximation to make to the null distribution of test statistics, either"skew_normal"
or"no_approximation"
- control_group
(optional) a string specifying the control group to use in the differential expression analysis, either
"complement"
or"nt_cells"
- resampling_mechanism
(optional) a string specifying the resampling mechanism to use, either
"permutations"
or"crt"
- multiple_testing_method
(optional; default
"BH"
) a string specifying the multiple testing correction method to use; seep.adjust.methods
for options- multiple_testing_alpha
(optional; default
0.1
) a numeric specifying the nominal level of the multiple testing correction method
Note
Every argument to this function is optional, but typically, users want to specify discovery_pairs
at minimum.
Examples
library(sceptredata)
data(highmoi_example_data)
data(grna_target_data_frame_highmoi)
# import data
sceptre_object <- import_data(
response_matrix = highmoi_example_data$response_matrix,
grna_matrix = highmoi_example_data$grna_matrix,
grna_target_data_frame = grna_target_data_frame_highmoi,
moi = "high",
extra_covariates = highmoi_example_data$extra_covariates,
response_names = highmoi_example_data$gene_names
)
# set analysis parameters
positive_control_pairs <- construct_positive_control_pairs(sceptre_object)
discovery_pairs <- construct_cis_pairs(sceptre_object,
positive_control_pairs = positive_control_pairs,
distance_threshold = 5e6
)
sceptre_object <- sceptre_object |>
set_analysis_parameters(
discovery_pairs = discovery_pairs,
positive_control_pairs = positive_control_pairs,
side = "left"
)