set_analysis_parameters() sets the analysis parameters that control how the statistical analysis is to be conducted. See Chapter 2 of the manual for more detailed information about this function.
Usage
set_analysis_parameters(
  sceptre_object,
  discovery_pairs = data.frame(grna_target = character(0), response_id = character(0)),
  positive_control_pairs = data.frame(grna_target = character(0), response_id =
    character(0)),
  side = "both",
  grna_integration_strategy = "union",
  formula_object = "default",
  resampling_approximation = "skew_normal",
  control_group = "default",
  resampling_mechanism = "default",
  multiple_testing_method = "BH",
  multiple_testing_alpha = 0.1
)Arguments
- sceptre_object
- a - sceptre_object
- discovery_pairs
- (optional) a data frame with columns - grna_targetand- response_idspecifying the discovery pairs to analyze
- positive_control_pairs
- (optional) a data frame with columns - grna_targetand- response_idspecifying the positive control pairs to analyze
- side
- (optional; default - "both") the sidedness of the test, one of- "left",- "right", or- "both"
- grna_integration_strategy
- (optional; default - "union") a string specifying the gRNA integration strategy, either- "singleton",- "union", or- "bonferroni"
- formula_object
- (optional) a formula object specifying how to adjust for the covariates in the model 
- resampling_approximation
- (optional; default - "skew_normal") a string indicating the resampling approximation to make to the null distribution of test statistics, either- "skew_normal"or- "no_approximation"
- control_group
- (optional) a string specifying the control group to use in the differential expression analysis, either - "complement"or- "nt_cells"
- resampling_mechanism
- (optional) a string specifying the resampling mechanism to use, either - "permutations"or- "crt"
- multiple_testing_method
- (optional; default - "BH") a string specifying the multiple testing correction method to use; see- p.adjust.methodsfor options
- multiple_testing_alpha
- (optional; default - 0.1) a numeric specifying the nominal level of the multiple testing correction method
Note
Every argument to this function is optional, but typically, users want to specify discovery_pairs at minimum.
Examples
data(highmoi_example_data)
data(grna_target_data_frame_highmoi)
# import data
sceptre_object <- import_data(
  response_matrix = highmoi_example_data$response_matrix,
  grna_matrix = highmoi_example_data$grna_matrix,
  grna_target_data_frame = grna_target_data_frame_highmoi,
  moi = "high",
  extra_covariates = highmoi_example_data$extra_covariates,
  response_names = highmoi_example_data$gene_names
)
# set analysis parameters
positive_control_pairs <- construct_positive_control_pairs(sceptre_object)
discovery_pairs <- construct_cis_pairs(sceptre_object,
  positive_control_pairs = positive_control_pairs,
  distance_threshold = 5e6
)
sceptre_object <- sceptre_object |>
  set_analysis_parameters(
    discovery_pairs = discovery_pairs,
    positive_control_pairs = positive_control_pairs,
    side = "left"
  )