plot_covariates()
creates a histogram of the covariates response_n_nonzero
, response_n_umis
, and (if applicable) response_p_mito
. Cellwise QC removes cells that lie in the extreme right tail of the response_p_mito
distribution or that lie in the extreme left or right tail of the response_n_nonzero
or response_n_umis
distribution. To help guide the selection of QC thresholds, plot_covariates()
plots candidate QC thresholds as vertical lines on the histograms. The optional arguments response_n_nonzero_range
, response_n_umis_range
, and p_mito_threshold
control the location of these candidate QC thresholds. response_n_nonzero_range
(resp., response_n_umis_range
) is a length-two vector of quantiles (default: c(0.01, 0.99)
) indicating the location at which to draw candidate QC thresholds on the response_n_nonzero
(resp., response_n_umis
) histogram. Next, p_mito_threshold
is a single numeric value in the interval [0,1] specifying the location at which to draw a candidate QC threshold on the response_p_mito
plot.
Arguments
- sceptre_object
a
sceptre_object
- response_n_umis_range
(optional; default
c(0.01, 0.99)
) a length-2 vector of quantiles indicating the location at which to draw vertical lines on theresponse_n_umis
histogram- response_n_nonzero_range
(optional; default
c(0.01, 0.99)
) a length-2 vector of quantiles indicating the location at which to draw vertical lines on theresponse_n_nonzero
histogram- p_mito_threshold
(optional; default
0.2
) a single numeric value in the interval [0,1] specifying the location at which to draw a vertical line on theresponse_p_mito
histogram. Note thatp_mito_threshold
is an absolute number rather than a percentile.- return_indiv_plots
(optional; default
FALSE
) ifFALSE
, then a list ofggplot
objects is returned; ifTRUE
then a singlecowplot
object is returned.
Value
a single cowplot
object containing the combined panels (if return_indiv_plots
is set to TRUE
) or a list of the individual panels (if return_indiv_plots
is set to FALSE
)
Note
If run_qc()
has already been called on the sceptre_object
, then the parameters response_n_umis_range
, response_n_nonzero_range
, and p_mito_threshold
are set to the corresponding parameters within the sceptre_object
.
Examples
library(sceptredata)
data(highmoi_example_data)
data(grna_target_data_frame_highmoi)
import_data(
response_matrix = highmoi_example_data$response_matrix,
grna_matrix = highmoi_example_data$grna_matrix,
grna_target_data_frame = grna_target_data_frame_highmoi,
moi = "high",
extra_covariates = highmoi_example_data$extra_covariates,
response_names = highmoi_example_data$gene_names
) |> plot_covariates(p_mito_threshold = 0.07)